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HOW FORECASTING METHODS
ARE SELECTED TODAY...

Linear Regression ARIMA
Reccurent Neural Network Deep AR
Moving Average Exponential Smoothing
N-BEATS SARIMAX
Prophet Temporal Fusion Transformer
Temporal Fusion Transformer Prophet

Multiple Linear Regression CNN
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TIME SERIES COMPONENTS
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Img.1: Exemplary time series time t
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SHORT-TERM FORECASTING METHODS

Well-performing benchmark methods (Ensafi 2022, Nguyen 2021)

Simple Statistical Methods
« Multiple Linear Regression

Complex Statistical Methods
* Prophet
* SARIMAX (Seasonal Auto-Regressive Integrated Moving Average X)

Complexity

Advanced Methods
» Feedforward Neural Network
* Recurrent Neural Network (including Memory)
* Long Short-Term Memory (including Forget Function)
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Img.2: Generalized procedure of a time series forecasting model selection
(Based on: Talagala 2018, Smith-Miles 2009)
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RANDOM FOREST CLASSIFIER

Applied classification algorithm

eat breakfast 90%
b

eat lunch

After 10am? /5%
d
After 8pm?

&
K eat dinner 90%
don't eat 95%

Imqg.3: Exemplary decision tree (Meltzer, 2021)
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RANDOM FOREST CLASSIFIER 1l

Applied classification algorithm

Tree 1
Maijority /
Averaging
Tree 2
Tree 3

Img.4: Generalized process of a random forest classifier (Meltzer, 2021)



CASE STUDY

A meta-learning approach
for short-term energy load,

generation, and price forecasting
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INPUT DATA

Country with one bidding zone
Country with multiple bidding zones

B Data unavailable
37 bidding zones of 28 European

countries

e

Energy Time Series (ENTSO-E, 2022)
* Day-Ahead Price
e Generation (Solar and Wind)
* Load

Weather Time Series (Copernicus, 2022)
* Wind speed
e Solar irradiance
* Air temperature

Img.5: Overview over available data per country
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INPUT DATA |

Img.6: Selected time frames

Jan - Mar Oct - Dec
aE - >
Apr - Jun | Oct
I H P
Jul - Sep

9 Time Frames x 37 Bidding Zones x 4 Energy Series Types - Missing Series
= 1026 Sample Time Series

12



CONFERENCE PRESENTATION HOCHSCHULE

HAMM-LIPPSTADT
Sten Kramin, 2022

INPUT DATA Il
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Img.7: Comparison of the sample time series
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METHODOLOGY - FEATURES

According to the methodology on slide 9.

8 Time series features were used for the model selection:

« Count of timestamps

 Coefficient of variation of the endogenous variables

 Coefficient of variation of the hour and day-type averages

« Autocorrelation of the endogenous variables for the lags 1 and 24.

« Pearson Correlation between the endogenous and it's exogenous variables
(First and second highest)
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METHODOLOGY - FORECASTING METHODS

According to the methodology on slide 9.

10 Methods for day-ahead forecasts were used:

« 3 variants of Multiple Linear Regression (different availability of information)
3 variants of SARIMAX (different model parameters)
« 2 variants of Prophet (different availability of information)

2 variants of LSTM (high amount of cells vs. high amount of iterations)

15
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METHODOLOGY - RANDOM FOREST

Features

T~

Train Set

800 TS R2 Scores
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Features

Training Phase

Test Set
226 TS

Img.8: Representation of the applied train and test procedure

Predicted
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RESULTS - FORECASTING PERFORMANCE

Median R2 Scores:

1, SARIMAX (0,1,2|1,0,1|24)
2. Prophet ExoTime

3. SARIMAX (1,1,1]|1,0,1]|24)
[...]

8. MLR ExoTime

9. SARIMAX (2,0,1]2,0,0|24)
10. MLR Exo

0.583
0.577
0.572

0.467
0.374
0.089

SARIMAX

Price

Load Prophet

None*
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Solar NI
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o
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0

Imqg.9: Distribution of the best forecasting methods per time series type

*Cases where no forecasting method had sufficient accuracy (R2 Score <= 0).. 17
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RESULTS - MODEL SELECTION

Result performance indicators as relative share of the test population.

@ Suggested model and best model match

Model with close-to-best accuracy suggested (AR2 < 0.05)

@ Model with far-from-best accuracy suggested (AR2 > 0.2)
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« the choice of the right forecasting method has
a high impact on the quality of the forecast.

« time series consist of many components that
are essential when choosing a forecasting
model.

« with the help of the feature-based forecast
model selection framework, the ideal model for
energy time series can be predicted with a
promising accuracy.

CONCLUSION

 thinking in terms of higher scales, a universally S OUTLOOK
applicable and highly accurate model selection
framework could be created.
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