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Decision-making: single cri ter ion

Deterministic single-

criterion problem

Optimization 

process

Optimal 

solution
Implementation Outcome

❑ Human participates only in the problem formulation

❑ The remaining process is technical, leading (hopefully) to the optimal solution

❑ Decision is embedded in the problem formulation (“somehow” is a black-box for the human) 

Based in Manuel A. Matos, Decision-making methods, PMAPS 2004 Tutorial

Humans like to

✓ understand cause-effect relation in decision-making

✓ have a sense of control (critical for autonomous processes)
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Decision-making: mult i -cr i ter ia

Deterministic 

multicriteria problem

Decision-aid 

process

Preferred 

solution
Implementation Outcome

❑ Human participates in the problem formulation

❑ Human preferences must be integrated in the problem

❑ The process leads to a preferred solution 

Iterative process 

(human-in-the-loop)

Interpretability is essential

Based in Manuel A. Matos, Decision-making methods, PMAPS 2004 Tutorial
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Decision-making under uncertainty

Single or multicriteria 

problem under 

uncertainty

Decision-aid 

process

Preferred 

solution
Implementation Outcome

❑ Human participates in the problem formulation & uncertainty analysis

❑ The preferred solution results from the human preferences and risk attitude

Uncertainty

Yet…

* uncertainty forecasts brings complexity and unperceived value to humans  

** trust is fundamental to avoid algorithm aversion

Based in Manuel A. Matos, Decision-making methods, PMAPS 2004 Tutorial
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*  Complexity

Physically-based temporal trajectories Physically-based (marginal) forecast intervals

AI-based (marginal) forecast intervalsSimultaneous forecast intervals

Forecast for a wind power plant (Sotavento, Spain)

R.J. Bessa, C. Möhrlen, V. Fundel, M. Siefert, J. Browell, S. Haglund El Gaidi, Bri-Mathias Hodge, U. Cali, G. Kariniotakis, “Towards improved understanding of the applicability of uncertainty forecasts in the electric power industry,” Energies, vol. 

10(9), pp. 1402, 2017



• Decision under risk

The decision maker has full information, in the 

sense that there is a subjective probability, i.e., 

𝑃 𝑠𝑗|𝑎𝑡 as the probability that sj is the true state, 

if the alternative at is chosen

• Decision under uncertainty

The decision maker has no information (relevant 

to the decision) about the true state of nature

P. Gärdenfors, “Forecasts, decisions and uncertain probabilities,” 

Erkenntnis, vol. 14(2), pp. 159-181, 1979

8

*  Complexity

In real-world scenarios, the decision 

maker has partial information

State-of-the-art uncertainty forecasts are 

calibrated (nominal-empirical probabilities≂0)

Calibration is quantified 

in a frequentist manner

We might need to consider first and 

second order probabilities (probability 

of a probability) - ambiguity

P. Gärdenfors (1979)
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*  Unperceived value

C. Mohrlen, R. J. Bessa, M. Barthod, G. Goretti, M. Siefert, “Use of forecast uncertainties in the power sector: state-of-the–art of business practices,” in Proc. of the 15th International Workshop on Large-

Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, 15-17 Nov. 2016

IEA Task 36 industry survey

inclusion of forecast uncertainty does not necessarily 

mean lower cost or higher profit if we just think in 

traditional performance metrics (total profit)
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**  Trust

key elements of trust

Source: O. Vereschak, G. Bailly, B. Caramiaux, “How to evaluate trust in AI-assisted 

decision making? A survey of empirical methodologies,” CSCW, Oct. 2021

In the outcome: immerse decision makers in a state of vulnerability 

to feel that their decision matters, i.e., having something at stake



Classical 
paradigms and 
market bidding

A. Botterud, J. Wang, Z. Zhou, R.J. Bessa, H. Keko, J.S. Akilimali, V. Miranda, “Wind power 

trading under uncertainty in LMP markets,” IEEE Transactions on Power Systems, vol. 27(2), 

pp. 894-903, May 2012



• Different rules (e.g., deviation penalties) and market sessions across countries

• Representation of uncertainty: marginal distributions (e.g., quantiles, pdf, pmf) for each 

lead-time → “uni-temporal” problem
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Bidding in the Electr ici ty Market
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• We consider three different decision paradigm

• Expected profit – risk neutral decision-maker
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Classical  Decision Paradigms

𝑚𝑎𝑥𝑞𝐷𝐴,ℎ 

𝑚=1

𝑀

𝑝𝑟𝑜𝑏𝑚 ∙ 𝜋ℎ
𝑚 𝑞𝐷𝐴,ℎ
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Classical  Decision Paradigms

Profit

P
ro

b
a
b

ili
ty

 d
e

n
s
it
y

th

cVaR is the expected value of 

the profit below threshold, th

Objective function: Max E(Profit) + w*cVaR

Trade-off Analysis –
Deterministic & 

Multicriteria
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Classical  Decision Paradigms

Risk Prone

Risk

Averse

Risk

Neutral

Decision Maker’s

Preference

(Utility Function)

0.0

0.5

1.0

Lowest

Profit

Highest

Profit

Objective function: Max E(Utility)

𝑈ℎ
𝑚=

1

1−𝑒𝛽
1 − 𝑒

𝛽 𝜋𝑚−𝜋𝑚𝑖𝑛

𝜋𝑚𝑎𝑥−𝜋𝑚𝑖𝑛

β = 0: neutral

β < 0: risk averse

β > 0: risk prone

Utility Theory – Stochastic 
& Single and Multicriteria
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Results for a Wind Power Plant in U.S.

Total 4-month profit versus hourly cVaR, no deviation penalty



Human 
understanding of 

forecast 
uncertainty value

Corinna Möhrlen, R.J. Bessa, N. Fleischhut, “A decision-making experiment under wind power 

forecast uncertainty,” Meteorological Applications, vol. 29, no. 1, pp. e2077, May/June 2022
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Key questions for the experiment

Do decision-makers make better decisions with information about forecast 

uncertainty, and in which situations?

Do they decide more risk averse or risk prone?

Do probabilistic forecasts allow better learning from feedback?
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Decision-making experiment

Experiment 1 (2020)
Scenario: whether a high-speed shutdown (HSSD) takes place within the forecast horizon in 12 cases 

Decision: whether to trade 50% or 100% of the generating power of an offshore wind power plant

Decision Tools: 

- 3 deterministic forecasts for wind power and 1 for wind speed

- probabilistic forecast showing wind power and wind speed marginal forecast intervals

Experiment 2 (2021-2022) – on-going
Scenario:

- 2 x times 20 cases (20 deterministic and 20 probabilistic cases)

- the participants make decisions based on either deterministic or probabilistic forecasts

- request on participant’s confidence level regarding their decision

- real-time environment, e.g. participants may be surprised by forecasts that fail to warn or over-predict

Decision Tools: 
Same as experiment 1 Link for the 2nd experiment: https://arc-vlab.mpib-berlin.mpg.de/wind-power

https://arc-vlab.mpib-berlin.mpg.de/wind-power
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Experiment and cost function

Trading HSSD No HSSD

100% -5.000 5.000

50% 0 2.500

Cost Function

Prob(HSSD) ≥ 33% → trading 50% gives higher payoff

Prob(HSSD) < 33% → trading 100% gives higher payoff

1st Decision 2nd  Decision

Power forecasts

Wind forecasts

Deterministic forecasts Probabilistic forecasts

Trade 100% Trade 50% Trade 100% Trade 50%
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Experiment main results

Conducted with 105 participants from the energy industry

Slightly higher income with probabilistic 

forecasts
Proportion of correct decisions

Other results

• In 9 out of 12 situations, more than 10% of the participants changed their mind 

• In three cases 30%–23% changed their mind, and in one case (Situation 1) 48% did

• 93% preferred some type of probabilistic forecast
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Experiment main results

Proportion of participants taking the risky option (trading 100%)

Situation 1

wind power forecast

wind speed forecast



Human 
interpretability in 

energy trading

K. Parginos, R.J. Bessa, S. Camal, G. Kariniotakis, “Interpretable data-driven solar power plant 

trading strategies,” IEEE ISGT Europe 2022, Novi Sad, Serbia, 10-12 Oct. 2022.
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What is interpretabi l i ty?

“ The ability to explain or to present a model output in understandable terms to a human”, Doshi-

Velez & Been Kim, 2017

Understanding

Inputs Outputs
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AI/ML frameworks for RES trading

FROM TO

Output
Trading decisions

Optimization of trading 
decision in energy 

markets 

RES 
production 
forecasting

Price

forecasting

Optimization of trading 
decision in energy 

markets 

RES 
production 
forecasting

Price

forecasting

OR EVEN…

A single 
prescriptive 

model

+
ReasoningOutput

Trading decisions

+

ReasoningOutput
Trading decisions
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Main interpretable approaches

Post-Hoc Ad-Hoc

Output
Trading decisions

AI “black-box”
model Symbolic

model

+

ReasoningOutput
Interpretation

method
(e.g., SHAP)

Output

+

Reasoning
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Interpretabi l i ty & prescript ive model in trading

Input Data

Trading 
decisions

model (ANN)

(Wind Speed Forecast) U 

P

P

P

(Temperature Forecast) T 

(Total Cloud Cover) TCC

Interpretable 
symbolic

model

U

TD

𝑇𝐷 = 𝑈3

𝑇𝐷 = ൗ𝑈2

3

𝑇𝐷 = 4T

𝑇𝐷 = 𝑈3+TCC

𝑇𝐷 = 0

𝑇𝐷 = 𝑈3

𝑇𝐷 = 1

+

Reasoning

Trading 
decisions

𝐿
𝑖𝑏
𝑟𝑎
𝑟𝑦

𝑜
𝑓

𝐴
𝑛
𝑎
𝑙𝑦
𝑡𝑖
𝑐𝑎
𝑙
𝐹
𝑢
𝑛
𝑐𝑡
𝑖𝑜
𝑛
𝑠

IFLTHE

IFLTHEU L 0

U M * 1

*

U U

U

R. Bessa, et al., “Good or bad wind power forecasts: a relative concept,” Wind Energy, vol. 14(5), pp. 625-636, July 2011
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Symbolic Regression

Using natural selection to build 
interpretable modelsStep 1

Randomly 
Generate

initial population

Step 2
Fitness Value 
Computation 

for each individual

Step 3

Application of 
Selection

mechanism

Genetic 
Programming

Is Fitness Threshold or 
Max. Num. of Generations 

Reached?

No
Step 4

Perform 
Reproduction

Yes

𝒁 ∶ 𝟐 ×
𝒙 − 𝒚

𝒛

IFLTHE

IFLTHEU L 0

U M * 1

*

U U

U

Output Best Individual
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Trading problem formulat ion

𝐿 = −λ↑ 𝑝𝐸 − 𝑦𝑆𝑅
− +λ↓ 𝑝𝐸 − 𝑦𝑆𝑅

+

imbalance cost

Formulation of fitness function 𝐿 to 
optimize trading value

𝑦𝑆𝑅 = 𝐺 𝑍𝐸,𝜃 , 𝑋

𝑍𝑜𝑝𝑡 = arg𝑚𝑖𝑛 𝐿 𝐺 𝑍𝐸,𝜃 , 𝑋 , 𝑦

Ad-Hoc

Symbolic
Regression

(SR)

+

𝐼𝑛𝑝𝑢𝑡 𝐷𝑎𝑡𝑎
𝑋

𝑦𝑆𝑅

𝑍𝐸,𝜃 ∈ Φ

Clustered Data

Non-Clustered Data

𝑦 = 𝑝𝐸 ∶ Actual energy produced

λ↑, λ↓: Imbalance prices

𝑆𝑅𝐺𝑙𝑜𝑏𝑎𝑙

𝑆𝑅(𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ)

Two ApproachesDefinitions
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Case-study: wind energy day-ahead bidding 
B
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Wind Speed (m/s)

Low TCC

High TCC

Low Temp

High Temp

Low 
wind speed

Medium 
wind speed

High 
wind speed

SR 
expression

Average 
Temp & TCC

We can identify the key features that drive our 
model, as well as how they interact with each 
other in different wind speed conditions

0.04 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑
2 −0.027 +

0.87 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑
3

𝑇𝑒𝑚𝑝

1.77 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑

2𝑇𝐶𝐶 + 𝑤𝑠𝑝𝑒𝑒𝑑

Global SR

0.11 ∙ 𝑤𝑠𝑝𝑒𝑒𝑑
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Case-study: wind energy day-ahead bidding 

Total Revenue (€) Comparison

Selected Strategy 𝑊𝑇1 𝑊𝑇𝟐 𝑊𝑇𝟑 𝑊𝑇𝟒 w./ Ref. Bidding

Perfect hindsight 272.209 264.449 254.960 253.068 7.15%

Reference bidding (opt. quantile) 257.158 241.241 238.468 238.145 0.00%

𝑆𝑅𝐺𝑙𝑜𝑏𝑎𝑙 238.632 228.124 219.630 219.744 -7.06%

𝑆𝑅(𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ) 250.051 241.338 232.002 231.072 -2.11%

4 x 2MW wind turbines, located in France (period of March 2019-May 2020)

Reference model (opt. quantile)

𝛼𝑡
∗ =

𝜆↓

𝜆↑ + 𝜆↓

optimal bid (min expected imbalance cost) is given by 𝐹−1 𝛼𝑡
∗



Towards new 
decision 

paradigms
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Revised decision framework

Decision problem 

under uncertainty

Decision-aid 

process

Preferred 

solution
Implementation Outcome

Uncertainty

Physics and/or statistically based
causal structure of the world

Level of skates (in the decision)

Time-to-decide (now or 
wait for next forecast?)

Perception & communication
of the uncertainty level
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Confidence-based decisions

Hill (2013). Confidence and decision. Games and Economic 
Behavior, 82, 675-692

Uncertainty forecasts with a larger spread can be helpful 

in catching low-probability-high-impact events, but can 

lead to expensive decisions due to high uncertainty

Narrow forecast intervals can on the other hand lead a 

decision-maker to over-confidence in a decision
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Framework appl ied to electr ical  grid management

Substation

Probability of a congestion for day D+1 (lead time: t+30|t)

> Decide now (i.e., “reserve” DER flexibility) or wait?

Forecast for t+30|t 

(with NWP 00h00)

Forecast for t+2|t

Target hour

meta-forecast: forecast the 

uncertainty of the “future” 

forecasts for t+18|t & t+2|t

R
is

k

Forecast for t+18|t 

(with NWP 12h00)

Cost

time

flexibility cost

uncertainty

in theory…

M
a
x
 R

is
k

Stakes
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Meta-forecasting

Gradient Boosting Trees

Forecasted 
generated with 
0h00 NWP

+
Features 
characterizing 
uncertainty level 
(IQR, forecasted 
quantiles, stdev.)

Meta-forecast MAE 
Imp. @ t+18|t
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Applicat ion in energy markets

Case 1 Case 4

time

Power

Trading 
volume

Trading 
volume

Forecast inside 
uncertainty band 
-------
no intraday 
trading

Case 2

Uncertainty
band of 
the forecast

Case 3

Day-ahead 
forecast

short-term 
forecast

Meta-forecasting: Wait for the intraday market 

or apply risk hedging now (e.g., storage)? 

If stakes are higher, a 

forecast with larger 

intervals might be 

preferred



Concluding 
remarks



• Different levels of information abstraction might be needed for trading 

under forecast uncertainty

• Revise traditional decision-making process in the context of Trust

• Improve risk perception via transparent representations of information and 

stakes (vulnerabilities)

• Integrate model confidence and reaction to failure

• Temporal dimension of decisions is frequently forgotten 

• Hybridization of traditional decision-making theory, operations research 

and ML
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Concluding remarks
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