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Human-in-the-
loop decision-
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challenges




Decision-making: single criterion
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Deterministic single- Optimization Optimal
criterion problem process solution

Implementation g

O Human participates only in the problem formulation
O The remaining process is technical, leading (hopefully) to the optimal solution
0 Decision is embedded in the problem formulation (“somehow” is a black-box for the human)

Humans like to
v understand cause-effect relation in decision-making
v' have a sense of control (critical for autonomous processes)

Based in Manuel A. Matos, Decision-making methods, PMAPS 2004 Tutorial 4




Decision-making: multi-criteria
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Deterministic Decision-aid Preferred
multicriteria problem process solution

Implementation s o

Iterative process

O Human participates in the problem formulation (human-in-the-loop)

O Human preferences must be integrated in the problem

QO The process leads to a preferred solution Interpretability is essential

D

Based in Manuel A. Matos, Decision-making methods, PMAPS 2004 Tutorial 5




Decision-making under uncertainty
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Single or multicriteria
problem under
uncertainty

Decision-aid Preferred
process solution

Implementation s

O Human participates in the problem formulation & uncertainty analysis
O The preferred solution results from the human preferences and risk attitude

Yet...
* uncertainty forecasts brings complexity and unperceived value to humans

** trust is fundamental to avoid algorithm aversion

Based in Manuel A. Matos, Decision-making methods, PMAPS 2004 Tutorial 5




*Complexity

Forecast for a wind power plant (Sotavento, Spain)

Physically-based temporal trajectories Physically-based (marginal) forecast intervals
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10(9), pp. 1402, 2017 7




*Complexity

* Decision under risk

The decision maker has full information, in the
sense that there is a subjective probability, i.e.,

P(sj|a.) as the probability that s; is the true state,
if the alternative a, is chosen

« Decision under uncertainty

The decision maker has no information (relevant
to the decision) about the true state of nature

P. Gardenfors, “Forecasts, decisions and uncertain probabilities,”
Erkenntnis, vol. 14(2), pp. 159-181, 1979

In real-worl

maker hag partial information

cision

State-of-the-art uncertainty forecasts are
calibrated (nominal-empirical probabilities=0)

O

Calibration is quantified
in a frequentist manner

>

We might need to consider first and
second order probabilities (probability
of a probability) - ambiguity

P. Gardenfors (1979)
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*Unperceived value

a IEA Task 36 industry survey
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Factors Agree [%] Not-Agree [%]

Weather is one out of many

uncertainty sources @ 0

Insufficient knowledge about

tools and approaches @ 47

Fear that speculative planning inclusion of forecast unpertalnty qus n(_)t necgssarlly
may result in a loss @ 36 > mean lower cost or higher profit if we just think in
Lack of staff to undertake the job 37 63 traditional performance metrics (total profit)

Lack of IT solutions 35 65

More information may lead to
slower decision making and

loss of important time 68
Flexibility in real-time staff

resources would be desirable,
but i1s not feasible 42 58

Company has access to confidential
market information and is not
allowed to speculate 33 67

C. Mohrlen, R. J. Bessa, M. Barthod, G. Goretti, M. Siefert, “Use of forecast uncertainties in the power sector: state-of-the—art of business practices,” in Proc. of the 15th International Workshop on Large-
Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, 15-17 Nov. 2016




* % -
Trust
2
®
o
- Positive
Vulnerability Expectations
p——— Reliance, etc.

key elements of trust

. Source: O. Vereschak, G. Bailly, B. Caramiaux, “How to evaluate trust in Al-assisted
y 3 decision making? A survey of empirical methodologies,” CSCW, Oct. 2021
3

Attitude

In the outcome: immerse decision makers in a state of vulnerability
to feel that their decision matters, i.e., having something at stake




Classical
paradigms and
market bidding

A. Botterud, J. Wang, Z. Zhou, R.J. Bessa, H. Keko, J.S. Akilimali, V. Miranda, “Wind power
trading under uncertainty in LMP markets,” IEEE Transactions on Power Systems, vol. 27(2),
pp. 894-903, May 2012
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Bidding in the Electricity Market

0S3aNI D

 Different rules (e.g., deviation penalties) and market sessions across countries

real-time
profit price
oL pa price devh
hour h l A
o \

iy =P G+ Py (G —ay”) — pen-|dey,|

T I I

DA bid real-time Deviation
delivery penalty

* Representation of uncertainty: marginal distributions (e.g., quantiles, pdf, pmf) for each
lead-time — “uni-temporal” problem




Classical Decision Paradigms
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* We consider three different decision paradigm

« Expected profit — risk neutral decision-maker

M
m
maxgp, , Z prob,, - my, (qDA’h)
m=1




Classical Decision Paradigms
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Objective function: Max E(Profit) + w*cVaR

Trade-off Analysis —
Deterministic &
Multicriteria

Probability density

' Profit
/ th

cVaR is the expected value of
the profit below threshold, th




Classical Decision Paradigms
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Obijective function: Max E(Utility)

B(nm_nmin)

Decision Maker’s 1 .
UM=——_ |1 — e sMmax_gmin

Preference h 1_¢B
(Utility Function)
10 - __==- ;‘
Risk _ -~ - Rl
Averse -~ RO
e e / B = O: neutral
e . 7 /
RSk /! B < O: risk averse
05 ,’ NeutraL/ / -

B > O: risk prone

Lowest Highest Utility Theory — Stochastic
Profit Profit & Single and Multicriteria

15



Results for a Wind Power Plant in U.S.
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Total 4-month profit versus hourly cVaR, no deviation penalty
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Human
understanding of
forecast
uncertainty value

Corinna Moéhrlen , R.J. Bessa , N. Fleischhut , “A decision-making experiment under wind power
forecast uncertainty,” Meteorological Applications, vol. 29, no. 1, pp. €2077, May/June 2022




Key gquestions for the experiment
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G‘E (j) Do decision-makers make better decisions with information about forecast
& uncertainty, and in which situations?

Do they decide more risk averse or risk prone?

&;

Do probabilistic forecasts allow better learning from feedback?




Decision-making experiment
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'

L i

%

Experiment 1 (2020)
Scenario: whether a high-speed shutdown (HSSD) takes place within the forecast horizon in 12 cases
Decision: whether to trade 50% or 100% of the generating power of an offshore wind power plant

Decision Tools:
- 3 deterministic forecasts for wind power and 1 for wind speed
- probabilistic forecast showing wind power and wind speed marginal forecast intervals

Experiment 2 (2021-2022) — on-going

Scenario:

- 2 x times 20 cases (20 deterministic and 20 probabilistic cases)

- the participants make decisions based on either deterministic or probabilistic forecasts

- request on participant’s confidence level regarding their decision

- real-time environment, e.g. participants may be surprised by forecasts that fail to warn or over-predict
Decision Tools:

Same as experiment 1 Link for the 2"d experiment: https:/arc-vlab.mpib-berlin.mpg.de/wind-power

e



https://arc-vlab.mpib-berlin.mpg.de/wind-power

Experiment and cost function
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£,

Deterministic forecasts —> 1st Decision ===y ‘ Probabilistic forecasts ==y 27d Decision

i R e
Iif\/\ Wind forecasts o] q
B4 Trade 100% Q Trade 50% Trade 100% J Trade 50%

Prob(HSSD) = 33% — trading 50% gives higher payoff

5000 1
Cost Function Prob(HSSD) < 33% — trading 100% gives higher payoff
©
>
100% -5.000 5.000 g 0
]
50% 0 2.500 u% 25004 — Trade 100%
=== Trade 50%
-5000 1 . . . . . .
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Probability of HSSD 20



Experiment main results

Conducted with 105 participants from the energy industry
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Slightly higher income with probabilistic Proportion of correct decisions

forecasts
° 3
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Other results
* In 9 out of 12 situations, more than 10% of the participants changed their mind

* Inthree cases 30%—-23% changed their mind, and in one case (Situation 1) 48% did
*  93% preferred some type of probabilistic forecast




Experiment main results Situation 1
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Proportion of participants taking the risky option (trading 100%)

z 60—-
Forecast Deterministic . Probabilistic sn-:
i HSSD noHSSD L1
O [o] - <
‘5 100% ——
o\b 75% A -
(@) |
S 50% .
C 3 _ L
S 25%1 I I ||
) I S —
g 0%1__ : . : = l : : . - N : F 1
o 1 2 3 4 5 6 7 8 9 10 11 12 ]
Situation 2




0310S3aNI @

Human
Interpretability In
energy trading

K. Parginos, R.J. Bessa, S. Camal, G. Kariniotakis, “Interpretable data-driven solar power plant
trading strategies,” IEEE ISGT Europe 2022, Novi Sad, Serbia, 10-12 Oct. 2022.




What is interpretability?
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Inputs Outputs

Understanding

“The ability to explain or to present a model output in understandable terms to a human”,




AlI/ML frameworks for RES trading

TO

=
B |

) RES i - RES
Pnce. production Prlce. production
forecasting forecasting forecasting forecasting
Optimization of trading Optimization of trading
decision in energy decision in energy
markets markets

o/ oupu @ . ¢

Trading decisions

Output Reasoning

Trading decisions

OR EVEN..

Je
!

A single
prescriptive
model

@ . °

Output Reasoning

Trading decisions
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Main interpretable approaches
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Post-Hoc Ad-Hoc
e laat
l
Al "t;:}aocdke—lbox" Symbolic
model

J OUtpUt l \A/
Trading decisions x — _
<O) + W
Interpretati / Output Reasoning
,| Interpretation /'\

method
(e.g., SHAP)

Output Reasoning




Interpretability & prescriptive model in trading
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Input Data model (ANN)

Trading
decisions

y

(Wind Speed Forecast) U

A
P
Interpretable
» symbolic
model
— 773
:
A 'E
P S 7D = 4T
=S
o [
= _ U2
2 S D =Y"/5
S 5 2
C S g TD = U3+TCC
(Total Cloud Cover) TCC [ < —




Symbolic Regression

Step 2

S Value
tep 1 y ‘
~. Computation

Randoml ~ . paaton
N or each individua
initial population \

\ Is Fitness Threshold or
} Max. Num. of Generations
Genetic l Reached?

Programming

Step 4 Output Best Individual

Perform

Reproduction

Step 3

ApEIication of

mechanism

ANI



Trading problem formulation
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Ad-Hoc Definitions Two Approaches

Input Data Ysp = G(ZE’Q,X)

r 7 -
Zopt = argmin L(G(ZE'H’X)’y) Non-Clustered Data

l {Zg g € B}
SRGiopai
Symbolic . . .
Regression Formulation of fitness function L to
(SR) optimize trading value
l y = pf : Actual energy produced Clustered Data
y AT, Al Imbalance prices SR(Low,Medium,High)
SR

\‘/
<O/) + _/!\_ L= [—AT(PE — ysr)” A" (pF — ySR)+1

imbalance cost




Case-study: wind energy day-ahead bidding
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Global SR
Low Medium High
wind speed wind speed wind speed 0.11 - Wpeeq
SR 2 7 W.?peed 177 Wspeed
expression 0.04 - Wepeea —bzy Temp 2TCC + Wspeeq
2
Low TCC
= —» Average
= Temp & TCC
s 15 High TCC
IS Low Temp
@
O
2 1
g
b
@ 05
We can identify the key features that drive our
model, as well as how they interact with each
0 other in different wind speed conditions

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wind Speed (m/s)




Case-study: wind energy day-ahead bidding
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4 x 2MW wind turbines, located in France (period of March 2019-May 2020)

200 -
175 1 ¥ Total Revenue (€) Comparison
g 150 Selected Strategy WT, WT; WT, w./ Ref. Bidding
5 1251 7% | Perfect hindsight 272.209 264.449 254.960 253.068 7.15%
o 100 -
'%‘; 075 | Reference bidding (opt. quantile) 257.158 241.241 238.468 238.145 0.00%
2 050 4 e .' SRclobal 238.632 228.124 219.630 219.744 _7.06%
0251 __ per
. Reference SR (Low Medium,High) 250.051 241.338 232.002 231.072 2.11%
& P & P &
Four of the day (HA:MM) Reference model (opt. quantile)
Ay = ———
AT+ 2

optimal bid (min expected imbalance cost) is given by F~1(a;)
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Towards new
decision
paradigms




Revised decision framework
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Decision problem . Decision-aid - Preferred _
under uncertainty process solution g Mplementation gy g

®




Confidence-based decisions

If stakes are:

Then base decision
on this confidence
level

High —
) Medum —
T Low

— Uncertainty forecasts with a larger spread can be helpful
~N ' in catching low-probability-high-impact events, but can

lead to expensive decisions due to high uncertainty

Narrow forecast intervals can on the other hand lead a
decision-maker to over-confidence in a decision

Hill (2013). Confidence and decision. Games and Economic

Behavior, 82, 675-692

0S3aNI D




Framework applied to electrical grid management

0S3aNI D

Probability of a congestion for day D+1 (lead time: t+30|t) A~
> Decide now (i.e., “reserve” DER flexibility) or wait? Substation
: %
&
=
‘ Stakes \1’
meta-forecast: forecast the . in theory...
uncertainty of the “future” | \\_
.
forecasts for t+18|t & t+2]t - uncertainty
Cost >
Target hour time

° oo —

Forecast for t+2]|t

Forecast for t+30|t Forecast for t+18|t
(with NWP 00h00) (with NWP 12h00)




Meta-forecasting

Forecasted
generated with
0h00 NWP

+
Features
characterizing
uncertainty level
(IQR, forecasted
guantiles, stdev.)
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2

Power

Case 1

short-term

forecast _
If stakes are higher, a

forecast with larger

intervals might be
& preferred

Trading
volume

Day-ahead
forecast

Case 2

Forecas

no intra
trading

t inside
uncertainty band

Application in energy markets

A

Case 3

day

Case 4

O

Trading
I volume

OS3aNI &3

Uncertainty
band of
the forecast

Meta-forecasting: Wait for the intraday market
or apply risk hedging now (e.g., storage)?

time

37
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Concluding
remarks




Concluding remarks
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Different levels of information abstraction might be needed for trading
under forecast uncertainty

Revise traditional decision-making process in the context of Trust

Improve risk perception via transparent representations of information and
stakes (vulnerabilities)

Integrate model confidence and reaction to failure

Temporal dimension of decisions is frequently forgotten

Hybridization of traditional decision-making theory, operations research
and ML
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